Laboratory Evaluation of the Temiticidal Efficacy of Copper HDO ${ }^{1}$

Gyu-Hyeok Kim $^{2} \cdot$ Won-Joung Hwang ${ }^{3}$. Tsuyoshi Yoshimura ${ }^{4}$ • Yuji Imamura ${ }^{4}$

Abstract

A laboratory no-choice termite bioassay was conducted to evaluate the ability of copper HDO (CX-A or copper xyligen) to protect radiata pine (Pinus radiata D. Don) wood samples from attack by two subterranean termite species, Reticulitermes speratus and Coptotermes formosanus. A series of sapwood samples were pressure treated with either $0.25 \%, 0.50 \%, 0.75 \%$, or 1.00% copper HDO solution. Samples treated with equivalent concentrations of a benchmark preservative, CCA-C, were used as treated controls. All samples (including controls) were subjected to an artificial weathering schedule before the bioassay. The samples were exposed to 30 -day R. speratus tests and 3-week C. formosanus tests. Copper HDO was shown to deter termites from significant feeding on the treated wood. At a retention of $5.8 \mathrm{~kg} / \mathrm{m}^{3}$ (treated with 0.75% solution) or higher, the mass loss from termite feeding did not exceed 3% for both the 30 -day R. speratus tests and the 3 -week C. formosanus tests. At each of the retentions tested, copper HDO performed comparably with equivalent retentions of CCA-C; however, field data are needed to validate these laboratory results. The preliminary findings are that copper HDO pressure treatment has potential as a viable method of protecting wood from attack by both termite species tested.

Keywords : Termites, Laboratory evaluation, Copper HDO, Reticulitermes speratus, Coptotermes formosanus

[^0]
[^0]: 1 Received on February 2, 2009
 Accepted on December 4, 2009
 2 Division of Environmental Science and EcologicalEngineering, Korea University, Seoul 136-713, Korea
 3 Division of Wood Processing, Department of Green Resources Utilization, Korea Forest Research Institute, 57 Hoegiro, Dongdaemun-gu, Seoul 130-712, Korea
 4 Research Institute for Sustainable Humanosphere, Kyoto University, Kyoto 611-0011, Japan

